Telegram Group & Telegram Channel
Как бы вы разработали систему детекции вредоносного контента в соцсетях?

Начнём с того, что нужно определить типы вредоносного контента, которые мы хотим отслеживать: это могут быть хейтспич, угрозы насилия, кибербуллинг и др. Затем важно понять объём контента, который предстоит анализировать (например, сотни миллионов постов в день), и то, какие языки должны поддерживаться.

Важно организовать сбор данных. Посты пользователей могут быть размечены либо автоматически (через пользовательские жалобы), либо вручную с участием модераторов для более точной оценки.

Одним из главных вызовов является разработка мультимодальной модели. Вредоносный контент может быть представлен в разных форматах: текст, изображения, видео, поэтому необходимо эффективно обрабатывать все эти типы данных. Для этого можно использовать методы раннего и позднего слияния данных: либо объединять данные разных типов сразу для единого предсказания, либо обрабатывать их независимо и затем объединять результаты. Для разработки могут использоваться нейронные сети, такие как модели на основе BERT для текстов и модели CLIP для изображений.

Важной частью системы также является возможность объяснить пользователю, почему его контент был помечен как вредоносный. Кроме того, в процессе онлайн-тестирования и развёртывания системы необходимо следить за её эффективностью через метрики, такие как процент вредоносных постов и количество успешных апелляций.

#машинное_обучение



tg-me.com/ds_interview_lib/609
Create:
Last Update:

Как бы вы разработали систему детекции вредоносного контента в соцсетях?

Начнём с того, что нужно определить типы вредоносного контента, которые мы хотим отслеживать: это могут быть хейтспич, угрозы насилия, кибербуллинг и др. Затем важно понять объём контента, который предстоит анализировать (например, сотни миллионов постов в день), и то, какие языки должны поддерживаться.

Важно организовать сбор данных. Посты пользователей могут быть размечены либо автоматически (через пользовательские жалобы), либо вручную с участием модераторов для более точной оценки.

Одним из главных вызовов является разработка мультимодальной модели. Вредоносный контент может быть представлен в разных форматах: текст, изображения, видео, поэтому необходимо эффективно обрабатывать все эти типы данных. Для этого можно использовать методы раннего и позднего слияния данных: либо объединять данные разных типов сразу для единого предсказания, либо обрабатывать их независимо и затем объединять результаты. Для разработки могут использоваться нейронные сети, такие как модели на основе BERT для текстов и модели CLIP для изображений.

Важной частью системы также является возможность объяснить пользователю, почему его контент был помечен как вредоносный. Кроме того, в процессе онлайн-тестирования и развёртывания системы необходимо следить за её эффективностью через метрики, такие как процент вредоносных постов и количество успешных апелляций.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/609

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA